Friday 13 January 2017

Ma (2) Bewegungsdurchschnitt

Gleitender Durchschnitt - MA BREAKING DOWN Gleitender Durchschnitt - MA Als SMA-Beispiel gilt eine Sicherheit mit folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Eine 10-tägige MA würde die Schlusskurse für die ersten 10 Tage als ersten Datenpunkt ausrechnen. Der nächste Datenpunkt würde den frühesten Preis senken, den Preis am Tag 11 addieren und den Durchschnitt nehmen, und so weiter, wie unten gezeigt. Wie bereits erwähnt, verzögert MAs die aktuelle Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA haben eine viel größere Verzögerung als eine 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge der MA zu verwenden, hängt von den Handelszielen, mit kürzeren MAs für kurzfristigen Handel und längerfristige MAs eher geeignet für langfristige Investoren. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Trading-Signale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, oder wenn zwei Durchschnitte überqueren. Eine steigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend liegt. Während eine sinkende MA zeigt, dass es in einem Abwärtstrend ist. In ähnlicher Weise wird das Aufwärtsmoment mit einem bulligen Crossover bestätigt. Die auftritt, wenn eine kurzfristige MA über einem längerfristigen MA kreuzt. Der Abwärtsmomentum wird mit einem bärischen Crossover bestätigt, der auftritt, wenn ein kurzfristiger MA unterhalb eines längerfristigen MA.6.2 Bewegungsdurchschnitte ma 40 elecales, order 5 41 In der zweiten Spalte dieser Tabelle ist ein gleitender Durchschnitt der Ordnung 5 Gezeigt, was eine Schätzung des Trendzyklus ergibt. Der erste Wert in dieser Spalte ist der Durchschnitt der ersten fünf Beobachtungen (1989-1993) der zweite Wert in der 5-MA-Spalte ist der Durchschnitt der Werte 1990-1994 und so weiter. Jeder Wert in der Spalte 5-MA ist der Mittelwert der Beobachtungen in den fünf Jahren, die auf das entsprechende Jahr zentriert sind. Es gibt keine Werte für die ersten zwei Jahre oder die letzten zwei Jahre, weil wir nicht zwei Beobachtungen auf beiden Seiten haben. In der obigen Formel enthält Spalte 5-MA die Werte von Hut mit k2. Um zu sehen, wie die Trend-Schätzung aussieht, stellen wir sie zusammen mit den Originaldaten in Abbildung 6.7 dar. Grundstück 40 elecsales, HauptsacheResidential Elektrizität salesquot, ylab quotGWhquot. Xlab quotYearquot 41 Zeilen 40 ma 40 elecales, 5 41. col quotredquot 41 Beachten Sie, wie der Trend (in rot) glatter als die ursprünglichen Daten ist und erfasst die Hauptbewegung der Zeitreihe ohne alle geringfügigen Schwankungen. Die gleitende Mittelmethode erlaubt keine Abschätzungen von T, wobei t nahe den Enden der Reihe ist, so daß sich die rote Linie nicht zu den Kanten des Graphen auf beiden Seiten erstreckt. Später werden wir anspruchsvollere Methoden der Trend-Zyklus-Schätzung verwenden, die Schätzungen nahe den Endpunkten erlauben. Die Reihenfolge des gleitenden Mittelwerts bestimmt die Glätte der Tendenzschätzung. Im Allgemeinen bedeutet eine größere Ordnung eine glattere Kurve. Die folgende Grafik zeigt die Auswirkung der Veränderung der Reihenfolge des gleitenden Durchschnitts für die privaten Stromverkaufsdaten. Einfache gleitende Mittelwerte wie diese sind meist ungerade (z. B. 3, 5, 7 usw.). Das ist also symmetrisch: In einem gleitenden Durchschnitt der Ordnung m2k1 gibt es k frühere Beobachtungen, k spätere Beobachtungen und die mittlere Beobachtung Die gemittelt werden. Aber wenn m gerade war, wäre es nicht mehr symmetrisch. Gleitende Mittelwerte der gleitenden Mittelwerte Es ist möglich, einen gleitenden Durchschnitt auf einen gleitenden Durchschnitt anzuwenden. Ein Grund hierfür besteht darin, einen gleitenden Durchschnitt gleichmäßig symmetrisch zu machen. Zum Beispiel könnten wir einen gleitenden Durchschnitt der Ordnung 4 nehmen und dann einen anderen gleitenden Durchschnitt der Ordnung 2 auf die Ergebnisse anwenden. In Tabelle 6.2 wurde dies für die ersten Jahre der australischen vierteljährlichen Bierproduktionsdaten durchgeführt. Beer2 lt - fenster 40 ausbeer, start 1992 41 ma4 lt - ma 40 beer2, bestellen 4. center FALSE 41 ma2x4 lt - ma 40 beer2, bestellen 4. center TRUE 41 Die Notation 2times4-MA in der letzten Spalte bedeutet ein 4-MA Gefolgt von einem 2-MA. Die Werte in der letzten Spalte werden durch einen gleitenden Durchschnitt der Ordnung 2 der Werte in der vorhergehenden Spalte erhalten. Beispielsweise sind die ersten beiden Werte in der 4-MA-Säule 451,2 (443410420532) 4 und 448,8 (410420532433) 4. Der erste Wert in der 2 × 4-MA-Säule ist der Durchschnitt dieser beiden: 450,0 (451.2448.8) 2. Wenn ein 2-MA einem gleitenden Durchschnitt gleicher Ordnung folgt (wie z. B. 4), wird er als zentrierter gleitender Durchschnitt der Ordnung 4 bezeichnet. Dies liegt daran, daß die Ergebnisse nun symmetrisch sind. Um zu sehen, dass dies der Fall ist, können wir die 2times4-MA wie folgt schreiben: begin hat amp frac Bigfrac (y y y y) frac (y y y y) Big amp frac y frac14y frac14y frac14y frac18y. Ende Es ist jetzt ein gewichteter Durchschnitt der Beobachtungen, aber er ist symmetrisch. Andere Kombinationen von gleitenden Durchschnitten sind ebenfalls möglich. Beispielsweise wird häufig ein 3times3-MA verwendet und besteht aus einem gleitenden Durchschnitt der Ordnung 3, gefolgt von einem anderen gleitenden Durchschnitt der Ordnung 3. Im allgemeinen sollte bei einer gleichmäßigen Ordnung MA eine gerade Ordnung MA folgen, um sie symmetrisch zu machen. Ähnlich sollte eine ungerade Ordnung MA eine ungerade Ordnung MA folgen. Schätzung des Trendzyklus mit saisonalen Daten Die häufigste Verwendung von zentrierten Bewegungsdurchschnitten ist die Schätzung des Trendzyklus aus saisonalen Daten. Betrachten Sie die 2times4-MA: hat frac y frac14y frac14y frac14y frac18y. Bei der Anwendung auf vierteljährliche Daten wird jedes Quartal des Jahres gleiches Gewicht gegeben, wie die ersten und letzten Bedingungen für das gleiche Quartal in aufeinander folgenden Jahren gelten. Infolgedessen wird die saisonale Veränderung ausgemittelt und die resultierenden Werte von Hut t haben wenig oder keine saisonale Veränderung übrig. Ein ähnlicher Effekt würde mit einem 2 × 8-MA oder einem 2 × 12-MA erhalten werden. Im allgemeinen ist ein 2-mal m-MA äquivalent zu einem gewichteten gleitenden Durchschnitt der Ordnung m1, wobei alle Beobachtungen 1 m betragen, mit Ausnahme der ersten und letzten Glieder, die Gewichte 1 (2 m) nehmen. Also, wenn die saisonale Zeit ist gleichmäßig und der Ordnung m, verwenden Sie eine 2times m-MA, um den Trend-Zyklus zu schätzen. Wenn die saisonale Periode ungerade und der Ordnung m ist, verwenden Sie eine m-MA, um den Trendzyklus abzuschätzen. Insbesondere kann ein 2 × 12-MA verwendet werden, um den Trendzyklus der monatlichen Daten abzuschätzen, und ein 7-MA kann verwendet werden, um den Trendzyklus der Tagesdaten abzuschätzen. Andere Optionen für die Reihenfolge der MA wird in der Regel in Trend-Zyklus Schätzungen durch die Saisonalität in den Daten kontaminiert werden. Beispiel 6.2 Herstellung elektrischer Geräte Abbildung 6.9 zeigt ein 2times12-MA, das auf den Index der elektrischen Ausrüstung angewendet wird. Beachten Sie, dass die glatte Linie keine Saisonalität zeigt, ist sie nahezu identisch mit dem in Abbildung 6.2 gezeigten Trendzyklus, der mit einer viel anspruchsvolleren Methode geschätzt wurde als die gleitenden Durchschnittswerte. Jede andere Wahl für die Reihenfolge des gleitenden Durchschnitts (mit Ausnahme von 24, 36 usw.) hätte zu einer glatten Linie geführt, die einige saisonale Schwankungen zeigt. Plot 40 elecequip, ylab quotNew Aufträge indexquot. (Euroregion) 41 Zeilen 40 ma 40 elecequip, bestellen 12 41. col quotredquot 41 Gewichtete gleitende Mittelwerte Kombinationen gleitender Mittelwerte ergeben gewichtete gleitende Mittelwerte. Zum Beispiel ist das oben diskutierte 2x4-MA äquivalent zu einem gewichteten 5-MA mit Gewichten, die durch frac, frac, frac, frac, frac gegeben werden. Im allgemeinen kann ein gewichtetes m-MA als Hut t sum k aj y geschrieben werden, wobei k (m-1) 2 und die Gewichte durch a, dots, ak gegeben sind. Es ist wichtig, daß die Gewichte alle zu eins zusammenfallen und daß sie symmetrisch sind, so daß aj a. Der einfache m-MA ist ein Spezialfall, bei dem alle Gewichte gleich 1m sind. Ein großer Vorteil von gewichteten gleitenden Durchschnitten ist, dass sie eine glattere Schätzung des Trendzyklus ergeben. Anstelle von Beobachtungen, die die Berechnung bei Vollgewicht verlassen und verlassen, werden ihre Gewichte langsam erhöht und dann langsam verringert, was zu einer glatteren Kurve führt. Einige spezifische Sätze von Gewichten sind weit verbreitet. Einige davon sind in Tabelle 6.3.2.1 Gleitende Durchschnittsmodelle (MA-Modelle) Zeitreihenmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und gleitende Durchschnittsterme enthalten. In Woche 1 erlernten wir einen autoregressiven Term in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Beispielsweise ist ein autoregressiver Term der Verzögerung 1 x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende Durchschnittsterme. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Es sei n (0, sigma2w) überschritten, was bedeutet, daß die wt identisch unabhängig voneinander verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das durch MA (1) bezeichnete gleitende Durchschnittsmodell der 1. Ordnung ist (xt mu wt theta1w) Das durch MA (2) bezeichnete gleitende Durchschnittsmodell der zweiten Ordnung ist (xt mu wt theta1w theta2w) Das gleitende Mittelmodell der q-ten Ordnung , Mit MA (q) bezeichnet, ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (nicht quadrierten) Ausdrücke in Formeln für ACFs und Abweichungen umwandelt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Vorzeichen verwendet worden sind, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Vorzeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Proben-ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) - Modell. Für interessierte Studierende, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handout. Beispiel 1 Angenommen, dass ein MA (1) - Modell x t 10 w t .7 w t-1 ist. Wobei (wt overset N (0,1)). Somit ist der Koeffizient 1 0,7. Die theoretische ACF wird durch eine Plot dieser ACF folgt folgt. Die graphische Darstellung ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis liefert eine Probe gewöhnlich ein solches klares Muster. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1) war. Für diese Simulation folgt ein Zeitreihen-Diagramm der Probendaten. Wir können nicht viel von dieser Handlung erzählen. Die Proben-ACF für die simulierten Daten folgt. Wir sehen eine Spitze bei Verzögerung 1, gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Es ist zu beachten, dass das Beispiel-ACF nicht mit dem theoretischen Muster des zugrunde liegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sein werden Eine andere Probe hätte eine geringfügig unterschiedliche Probe ACF wie unten gezeigt, hätte aber wahrscheinlich die gleichen breiten Merkmale. Theroretische Eigenschaften einer Zeitreihe mit einem MA (2) - Modell Für das MA (2) - Modell sind die theoretischen Eigenschaften die folgenden: Die einzigen Werte ungleich Null im theoretischen ACF sind für die Lags 1 und 2. Autokorrelationen für höhere Lags sind 0 , So zeigt ein Beispiel-ACF mit signifikanten Autokorrelationen bei Lags 1 und 2, aber nicht signifikante Autokorrelationen für höhere Lags ein mögliches MA (2) - Modell. Iid N (0,1). Die Koeffizienten betragen 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, wird der theoretische ACF nur bei den Verzögerungen 1 und 2 Werte ungleich Null aufweisen. Werte der beiden Nicht-Autokorrelationen sind A-Plots des theoretischen ACFs. Wie fast immer der Fall ist, verhalten sich Musterdaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Beispielwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wobei wt iid N (0,1) ist. Die Zeitreihenfolge der Daten folgt. Wie bei dem Zeitreihenplot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Die Proben-ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) - Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei Lags 1 und 2, gefolgt von nicht signifikanten Werten für andere Lags. Beachten Sie, dass aufgrund des Stichprobenfehlers das Muster ACF nicht genau dem theoretischen Muster entsprach. ACF für allgemeine MA (q) - Modelle Eine Eigenschaft von MA (q) - Modellen besteht im Allgemeinen darin, dass Autokorrelationen ungleich Null für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q existieren. Nicht-Eindeutigkeit der Verbindung zwischen Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) - Modell für einen Wert von 1. Die reziproke 1 1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0.5 für 1. Und dann 1 (0,5) 2 für 1 verwenden. Youll erhalten (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung als Invertibilität zu befriedigen. Wir beschränken MA (1) - Modelle auf Werte mit einem Absolutwert von weniger als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, während 1 10,5 2 nicht. Invertibilität von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch Konvergenz meinen wir, dass die AR-Koeffizienten auf 0 sinken, wenn wir in der Zeit zurückgehen. Invertibilität ist eine Einschränkung, die in Zeitreihensoftware programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Begriffen abzuschätzen. Sein nicht etwas, das wir überprüfen in der Datenanalyse. Zusätzliche Informationen über die Invertibilitätsbeschränkung für MA (1) - Modelle finden Sie im Anhang. Fortgeschrittene Theorie Anmerkung. Für ein MA (q) - Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten solche Werte haben, daß die Gleichung 1- 1 y-. - qy q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 wurde der theoretische ACF des Modells x t 10 w t aufgetragen. 7w t-1. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die R-Befehle, die verwendet wurden, um den theoretischen ACF aufzuzeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens lags, die im Bereich von 0 bis 10 liegt (H0) fügt dem Diagramm eine horizontale Achse hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Genannt acfma1 (unsere Wahl des Namens). Der Plotbefehl (der dritte Befehl) verläuft gegen die ACF-Werte für die Verzögerungen 1 bis 10. Der ylab-Parameter bezeichnet die y-Achse und der Hauptparameter einen Titel auf dem Plot. Um die Zahlenwerte der ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und Diagramme wurden mit den folgenden Befehlen durchgeführt. (N150, list (mac (0.7))) Simuliert n 150 Werte aus MA (1) xxc10 addiert 10 zum Mittelwert 10. Simulationsvorgaben bedeuten 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurde der theoretische ACF des Modells xt 10 wt. 5 w t-1 .3 w t-2 aufgetragen. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 Plot (lags, acfma2, xlimc (1,10), ylabr, typh, main ACF für MA (2) mit theta1 0,5, (X, x) (x, x) (x, x, x, y) (1) Für interessierte Studierende sind hier Beweise für die theoretischen Eigenschaften des MA (1) - Modells. Variante: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1 der vorhergehende Ausdruck 1 w 2. Für irgendeinen h 2 ist der vorhergehende Ausdruck 0 Der Grund dafür ist, dass, durch Definition der Unabhängigkeit der wt. E (w k w j) 0 für beliebige k j. Da w w die Mittelwerte 0, E (w j w j) E (w j 2) w 2 haben. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um den oben angegebenen ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so daß die AR-Koeffizienten gegen 0 konvergieren, wenn wir unendlich zurück in der Zeit bewegen. Gut zeigen Invertibilität für die MA (1) - Modell. Wir setzen dann die Beziehung (2) für wt-1 in Gleichung (1) (3) ein (zt wt theta1 (z-therma1w) wt theta1z - theta2w) Zum Zeitpunkt t-2. Gleichung (2) wird dann in Gleichung (3) die Gleichung (4) für wt-2 ersetzen (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Unendlich), erhalten wir das unendliche Ordnungsmodell (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z vervielfachen (unendlich) in der Größe zunehmen, Zeit. Um dies zu verhindern, benötigen wir 1 lt1. Dies ist die Bedingung für ein invertierbares MA (1) - Modell. Unendlich Ordnung MA Modell In Woche 3, gut sehen, dass ein AR (1) Modell in ein unendliches order MA Modell umgewandelt werden kann: (xt - mu wt phi1w phi21w Punkte phik1 w Punkte sum phij1w) Diese Summation der Vergangenheit weißer Rauschbegriffe ist bekannt Als die kausale Repräsentation eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Anforderung für eine stationäre AR (1) ist, dass 1 lt1. Berechnen Sie die Var (x t) mit der kausalen Darstellung. Dieser letzte Schritt verwendet eine Grundtatsache über geometrische Reihen, die (phi1lt1) erforderlich sind, ansonsten divergiert die Reihe. Navigation


No comments:

Post a Comment